Augustin, A., Yi, J., Clausen, T., and Townsley, W.: A Study of LoRa: Long Range & Low Power Networks for the Internet of Things, Sensors, 16, 1466, https://doi.org/10.3390/s16091466, 2016. a
Bartos, E. A., Markowski, P. M., and Richardson, Y. P.: Three-Dimensional Thermodynamic Observations in Supercell Thunderstorms from Swarms of Balloon-Borne Sondes, Mon. Weather Rev., 150, 1689–1723, https://doi.org/10.1175/MWR-D-21-0122.1, 2022. a, b, c
Beck, J. and Weiss, C.: An assessment of low-level baroclinity and vorticity within a simulated supercell, Mon. Weather Rev., 141, 649–669, 2013. a, b
Bedard Jr., A. and Ramzy, C.: Surface meteorological observations in severe thunderstorms. Part I: Design details of TOTO, J. Appl. Meteorol. Clim., 22, 911–918, https://doi.org/10.1175/1520-0450(1983)022<0911:SMOIST>2.0.CO;2, 1983. a
Blair, S. F., Deroche, D. R., and Pietrycha, A. E.: In situ observations of the 21 April 2007 Tulia, Texas tornado, E-Journal of Severe Storms Meteorology, 3, 1–27, https://doi.org/10.55599/ejssm.v3i3.16, 2008. a, b, c, d, e
Bluestein, H. B.: Surface meteorological observations in severe thunderstorms. Part II: Field experiments with TOTO, J. Appl. Meteorol. Clim., 22, 919–930, https://doi.org/10.1175/1520-0450(1983)022<0919:SMOIST>2.0.CO;2, 1983. a
Bluestein, H. B.: A history of severe-storm-intercept field programs, Weather Forecast., 14, 558–577, https://doi.org/10.1175/1520-0434(1999)014<0558:AHOSSI>2.0.CO;2, 1999. a, b
Bluestein, H. B., Lee, W.-C., Bell, M., Weiss, C. C., and Pazmany, A. L.: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure, Mon. Weather Rev., 131, 2968–2984, https://doi.org/10.1175/1520-0493(2003)131<2968:MDROOA>2.0.CO;2, 2003. a
Bluestein, H. B., Weiss, C. C., and Pazmany, A. L.: The Vertical Structure of a Tornado near Happy, Texas, on 5 May 2002: High-Resolution, Mobile, W-band, Doppler Radar Observations, Mon. Weather Rev., 132, 2325–2337, https://doi.org/10.1175/1520-0493(2004)132<2325:tvsoat>2.0.co;2, 2004. a
Colgate, S. A.: Small rocket tornado probe, in: 12th Conf. on Severe Local Storms, San Antonio, Texas, 11–15 January 1982, American Meteorological Society, 396–400, https://digital.library.unt.edu/ark:/67531/metadc1092589/ (last access: 27 January 2024), 1982. a
Federal Aviation Administration: JO 7400.2N – Procedures for Handling Airspace Matters: Chapter 31, Amateur Rocket and Commercial Space Operations, https://www.faa.gov/air_traffic/publications/atpubs/pham_html/chapter_31.html (last access: 9 October 2022), 2022. a, b
Fiedler, B.: Suction vortices and spiral breakdown in numerical simulations of tornado-like vortices, Atmos. Sci. Lett., 10, 109–114, 2009. a, b
Frew, E. W., Argrow, B., Borenstein, S., Swenson, S., Hirst, C. A., Havenga, H., and Houston, A.: Field observation of tornadic supercells by multiple autonomous fixed-wing unmanned aircraft, J. Field Robot., 37, 1077–1093, https://doi.org/10.1002/rob.21947, 2020. a, b
Groenemeijer, P.: Great footage. I tracked an object that seemed to be lifted particularly fast early in the video. I calculated speeds partly over 100 m/s (360 km/h or 225 mph). Later, debris can be seen to move horizontally at similar speeds just 20ish meters above the ground, European Severe Storms Laboratory (ESSL), https://x.com/pgroenemeijer/status/1521027958827274240?s=20 (last access: 27 January 2024), 2022. a
Houston, A. L., Argrow, B., Coniglio, M. C., Frew, E. W., Rasmussen, E. N., Weiss, C. C., and Ziegler, C. L.: Targeted observation by radars and UAS of supercells (TORUS): Summary of the 2019 field campaign, in: 100th AMS Annual Meeting, American Meteorological Society, Boston Convention and Exhibition Center, MA, USA, 14 January 2020, Boston Convention and Exhibition Center, MA, USA https://ams.confex.com/ams/2020Annual/webprogram/Paper369999.html (last access: 27 January 2024), 2020. a, b
Karstens, C. D., Samaras, T. M., Lee, B. D., Gallus, W. A., and Finley, C. A.: Near-Ground Pressure and Wind Measurements in Tornadoes, Mon. Weather Rev., 138, 2570–2588, https://doi.org/10.1175/2010mwr3201.1, 2010. a, b, c, d, e, f, g, h
Kosiba, K. and Wurman, J.: The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado, J. Atmos. Sci., 67, 3074–3083, https://doi.org/10.1175/2010JAS3416.1, 2010. a, b
Kosiba, K. A. and Wurman, J.: The three-dimensional structure and evolution of a tornado boundary layer, Weather Forecast., 28, 1552–1561, https://doi.org/10.1175/WAF-D-13-00070.1, 2013. a, b, c
Lemon, L. R. and Doswell III, C. A.: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis, Mon. Weather Rev., 107, 1184–1197, 1979. a, b, c, d, e
Lewellen, D., Lewellen, W., and Xia, J.: The influence of a local swirl ratio on tornado intensification near the surface, J. Atmos. Sci., 57, 527–544, 2000. a, b, c, d
Lewellen, W., Lewellen, D., and Sykes, R.: Large-eddy simulation of a tornado’s interaction with the surface, J. Atmos. Sci., 54, 581–605, 1997. a, b, c
Mahesh, A., Walden, V. P., and Warren, S. G.: Radiosonde Temperature Measurements in Strong Inversions: Correction for Thermal Lag Based on an Experiment at the South Pole, J. Atmos. Ocean. Tech., 14, 45–53, https://doi.org/10.1175/1520-0426(1997)014<0045:rtmisi>2.0.co;2, 1997. a, b
Markowski, P. M., Richardson, Y. P., Richardson, S. J., and Petersson, A.: Aboveground thermodynamic observations in convective storms from balloonborne probes acting as pseudo-Lagrangian drifters, B. Am. Meteorol. Soc., 99, 711–724, https://doi.org/10.1175/BAMS-D-17-0204.1, 2018. a, b, c, d, e, f
Miloshevich, L. M., Paukkunen, A., Vömel, H., and Oltmans, S. J.: Development and Validation of a Time-Lag Correction for Vaisala Radiosonde Humidity Measurements, J. Atmos. Ocean. Tech., 21, 1305–1327, https://doi.org/10.1175/1520-0426(2004)021<1305:davoat>2.0.co;2, 2004. a, b
Nash, J.: Measurement of upper-air pressure, temperature and humidity; Instruments and Observing Methods Report No. 121, World Meteorological Organization, https://library.wmo.int/viewer/37291?medianame=iom_121_en_#page=1&viewer=picture&o=bookmarks&n=0&q= (last access: 27 January 2024), 2015. a
National Association of Rocketry: Model Rocket Safety Code, https://www.nar.org/safety-information/model-rocket-safety-code/ (last access: 9 October 2022), 2022a. a
National Association of Rocketry: Laws and Regulations, https://www.nar.org/find-a-local-club/section-guidebook/laws-regulations/ (last access: 9 October 2022), 2022b. a
National Fire Protection Association: Code for Model Rocketry, https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=1122 (last access: 9 October 2022), 2018. a
National Weather Service: 28 May 2019 Tornadoes, https://www.weather.gov/eax/28May2019_Tornadoes (last access: 20 April 2022), 2019. a, b, c
National Weather Service: 11 Oct 2023 Radiosonde Observation, https://www.weather.gov/upperair/factsheet#:~:text=The%20radiosonde%20is%20a%20small,with%20hydrogen%20or%20helium%20gas. (last access: 11 October 2023), 2023. a
NOAA National Centers for Environmental Information (NCEI): State of the Climate: Monthly Tornadoes Report for May 2019, https://www.ncei.noaa.gov/access/monitoring/monthly-report/tornadoes/201905 (last access: 11 October 2022), 2019a. a
NOAA National Centers for Environmental Information (NCEI): Storm Events Database Bulk Data Download, https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles/StormEvents_details-ftp_v1.0_d2019_c20210803.csv.gz (last access: 9 May 2022), 2019b. a, b
Noreen, U., Bounceur, A., and Clavier, L.: A study of LoRa low power and wide area network technology, in: 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017, IEEE, 1–6, https://doi.org/10.1109/atsip.2017.8075570, 2017. a
Pazmany, A. L., Mead, J. B., Bluestein, H. B., Snyder, J. C., and Houser, J. B.: A mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system, J. Atmos. Ocean. Tech., 30, 1398–1413, https://doi.org/10.1175/JTECH-D-12-00166.1, 2013. a
Samaras, T. M.: A historical perspective of in-situ observations within tornado cores, in: 22nd Conf. on Severe Local Storms, Hyannis, MA, 4–8 October 2004, American Meteorological Society (AMS) [preprint], vol. 11, https://ams.confex.com/ams/pdfpapers/81153.pdf (last access: 27 January 2024), 2004. a
Samaras, T. M. and Lee, J. J.: Pressure measurements within a large tornado, in: Eighth Symp. on Integrated Observing and Assimilation for Atmosphere, Oceans, and Land Surface, Seattle, WA, USA, 10–15 January 2004, American Meteorological Society (AMS), https://ams.confex.com/ams/pdfpapers/74267.pdf (last access: 27 January 2024), 2004. a, b, c, d
Semtech: LoRa and LoRaWAN: A Technical Overview, accessed, https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf (last access: 9 October 2022), 2019. a
Simpson, M. and Timmer, R.: Thermal Lag Treatment For Lawrence/Linwood Tornado Probe Data, OSF [data set], https://doi.org/10.17605/OSF.IO/BQ93T, 2019. a
Snow, J., Church, C., and Barnhart, B.: An investigation of the surface pressure fields beneath simulated tornado cyclones, J. Atmos. Sci., 37, 1013–1026, 1980. a, b, c
Storm Prediction Center: SPC Severe Weather Event Review for Tuesday May 28, 2019, https://www.spc.noaa.gov/exper/archive/event.php?date=20190528 (last access: 20 April 2022), 2019. a, b
Straka, J. M., Rasmussen, E. N., and Fredrickson, S. E.: A mobile mesonet for finescale meteorological observations, J. Atmos. Ocean. Tech., 13, 921–936, https://doi.org/10.1175/1520-0426(1996)013<0921:AMMFFM>2.0.CO;2, 1996. a
Swenson, S., Argrow, B., Frew, E., Borenstein, S., and Keeler, J.: Development and deployment of air-launched drifters from small uas, Sensors, 19, 2149, https://doi.org/10.3390/s19092149, 2019. a
Tanamachi, R. L., Bluestein, H. B., Xue, M., Lee, W.-C., Orzel, K. A., Frasier, S. J., and Wakimoto, R. M.: Near-Surface Vortex Structure in a Tornado and in a Sub-Tornado-Strength Convective-Storm Vortex Observed by a Mobile W-Band Radar during VORTEX2, Mon. Weather Rev., 141, 3661–3690, https://doi.org/10.1175/mwr-d-12-00331.1, 2013. a, b
Timmer, R., Simpson, M., Schofer, S., and Brooks, C.: Public Data Lawrence/Linwood EF4 Tornado – 28th May 2019, OSF [data set], https://doi.org/10.17605/OSF.IO/Z64FD, 2022. a
Timmer, R., Simpson, M., Schofer, S., and Brooks, C.: Video Supplement Lawrence/Linwood EF4 Tornado – 28th May 2019, Supplemental1.mov/Supplemental2.mov, OSF
, https://osf.io/ubtn5/ (last access: 27 January 2024), 2023. a, b
Wakimoto, R. M., Murphey, H. V., Dowell, D. C., and Bluestein, H. B.: The Kellerville tornado during VORTEX: Damage survey and Doppler radar analyses, Mon. Weather Rev., 131, 2197–2221, https://doi.org/10.1175/1520-0493(2003)131<2197:TKTDVD>2.0.CO;2, 2003. a
Wakimoto, R. M., Atkins, N. T., and Wurman, J.: The LaGrange Tornado during VORTEX2. Part I: Photogrammetric Analysis of the Tornado Combined with Single-Doppler Radar Data, Mon. Weather Rev., 139, 2233–2258, https://doi.org/10.1175/2010mwr3568.1, 2011. a, b
Wakimoto, R. M., Atkins, N. T., Butler, K. M., Bluestein, H. B., Thiem, K., Snyder, J. C., Houser, J., Kosiba, K., and Wurman, J.: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data, Mon. Weather Rev., 144, 1749–1776, 2016. a
Wang, J., Zhang, L., Dai, A., Immler, F., Sommer, M., and Vömel, H.: Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data, J. Atmos. Ocean. Tech., 30, 197–214, https://doi.org/10.1175/JTECH-D-12-00113.1, 2013. a
Weiss, C. C. and Schroeder, J.: StickNet–A new portable, rapidly-deployable, surface observation system, in: 24th Conf. on IIPS, New Orleans, LA, USA, 20–24 January 2008, https://ams.confex.com/ams/pdfpapers/134047.pdf (last access: 27 January 2024), 2008. a
Winn, W. P., Hunyady, S. J., and Aulich, G. D.: Pressure at the ground in a large tornado, J. Geophys. Res.-Atmos., 104, 22067–22082, https://doi.org/10.1029/1999jd900387, 1999. a
World Meteorological Organization: Guide to Meteorological Instruments and Methods of Observation, https://library.wmo.int/index.php?lvl=notice_display&id=12407#.XPf8bS8ZNhF (last access: 20 April 2022), 2017. a
Wurman, J., Dowell, D., Richardson, Y., Markowski, P., Rasmussen, E., Burgess, D., Wicker, L., and Bluestein, H. B.: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2, B. Am. Meteorol. Soc., 93, 1147–1170, https://doi.org/10.1175/bams-d-11-00010.1, 2012. a
Wurman, J., Kosiba, K., and Robinson, P.: In situ, Doppler radar, and video observations of the interior structure of a tornado and the wind–damage relationship, B. Am. Meteorol. Soc., 94, 835–846, 2013. a, b, c, d, e, f